580 research outputs found

    YAPA: A generic tool for computing intruder knowledge

    Full text link
    Reasoning about the knowledge of an attacker is a necessary step in many formal analyses of security protocols. In the framework of the applied pi calculus, as in similar languages based on equational logics, knowledge is typically expressed by two relations: deducibility and static equivalence. Several decision procedures have been proposed for these relations under a variety of equational theories. However, each theory has its particular algorithm, and none has been implemented so far. We provide a generic procedure for deducibility and static equivalence that takes as input any convergent rewrite system. We show that our algorithm covers most of the existing decision procedures for convergent theories. We also provide an efficient implementation, and compare it briefly with the tools ProVerif and KiSs

    Turbulent transport of material particles: An experimental study of finite size effects

    Full text link
    We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow of air. We vary the size of the particles in a range corresponding to turbulent inertial scales and explore how the turbulent forcing experienced by the particles depends on their size. We show that, while the global shape of the intermittent acceleration probability density function does not depend significantly on particle size, the acceleration variance of the particles decreases as they become larger in agreement with the classical scaling for the spectrum of Eulerian pressure fluctuations in the carrier flow

    Automating Security Analysis: Symbolic Equivalence of Constraint Systems

    Get PDF
    We consider security properties of cryptographic protocols, that are either trace properties (such as confidentiality or authenticity) or equivalence properties (such as anonymity or strong secrecy). Infinite sets of possible traces are symbolically represented using deducibility constraints. We give a new algorithm that decides the trace equivalence for the traces that are represented using such constraints, in the case of signatures, symmetric and asymmetric encryptions. Our algorithm is implemented and performs well on typical benchmarks. This is the first implemented algorithm, deciding symbolic trace equivalence

    Optical properties of (GeSe2)100−x(Sb2Se3)x glasses in near- and middle-infrared spectral regions

    No full text
    International audienceChalcogenide glasses from Ge-Sb-Se ternary system with different antimony content were fabricated and basic physico-chemical properties (chemical composition, thermal characteristics, density) were evaluated considering the glassy network connectivity. Optical properties of the glasses were heavily studied employing transmission spectroscopy, prism coupling technique, and particularly spectroscopic ellipsometry covering broad spectral range (0.3-20 μm). Refractive indices data show very good agreement between ellipsometry and prism coupling techniques in near-infrared range. Moreover, the reliability of infrared spectroscopic ellipsometry was demonstrated for precise determination of refractive index of chalcogenide glasses in near- as well as middle-infrared spectral regions

    A Physical Approach for Stochastic Modeling of TERO-based TRNG

    Get PDF
    International audienceSecurity in random number generation for cryptography is closely related to the entropy rate at the generator output. This rate has to be evaluated using an appropriate stochastic model. The stochastic model proposed in this paper is dedicated to the transition effect ring oscillator (TERO) based true random number generator (TRNG) proposed by Varchola and Drutarovsky in 2010. The advantage and originality of this model is that it is derived from a physical model based on a detailed study and on the precise electrical description of the noisy physical phenomena that contribute to the generation of random numbers. We compare the proposed electrical description with data generated in a 28 nm CMOS ASIC implementation. Our experimental results are in very good agreement with those obtained with both the physical model of TERO's noisy behavior and with the stochastic model of the TERO TRNG, which we also confirmed using the AIS 31 test suites

    Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment

    Get PDF
    We report measurements of the dissipation in the Superfluid Helium high REynold number von Karman flow (SHREK) experiment for different forcing conditions, through a regime of global hysteretic bifurcation. Our macroscopical measurements indicate no noticeable difference between the classical fluid and the superfluid regimes, thereby providing evidence of the same dissipative anomaly and response to asymmetry in fluid and superfluid regime. %In the latter case, A detailed study of the variations of the hysteretic cycle with Reynolds number supports the idea that (i) the stability of the bifurcated states of classical turbulence in this closed flow is partly governed by the dissipative scales and (ii) the normal and the superfluid component at these temperatures (1.6K) are locked down to the dissipative length scale.Comment: 5 pages, 5 figure

    Contributions of U-Th-Pb dating on the diagenesis and sediment sources of the Lower Group (BI) of the Mbuji-Mayi Supergroup (Democratic Republic of Congo)

    Full text link
    In this paper, we present new age constraints for the lower part of the Meso-Neoproterozoic sedimentary Mbuji-Mayi Supergroup (Democratic Republic of Congo, DRC). This Supergroup preserves a large diversity of organic-walled microfossils, evidencing the diversification of early eukaryotes for the first time in Central Africa. We use different methods such as in situ U-Pb geochronology by LA-ICP-MS and U-Th-Pb chemical datings by Electron Microprobe on diagenetic and detrital minerals such as xenotimes, monazites and zircons. We attempt to better constrain the provenance of the Mbuji-Mayi sediments and the minimum age of the Mbuji-Mayi Supergroup to constrain the age of the microfossils. Results with LA-ICP-MS and EMP provide new ages between 1030 and 1065 Ma for the diagenesis of the lower part of the sedimentary sequence. These results are consistent with data on biostratigraphy supporting the occurrence of worldwide changes at the Mesoproterozoic/Neoproterozoic boundary
    corecore